1 Preliminaries

Let N be the set of non-negative natural numbers. A smooth map is a map of class C^{∞} .

Definition 1.1 (Chart). Let (X, \mathcal{T}) be a topological space and $n \in \mathbb{N}$. An *n*-dimensional chart on (X, \mathcal{T}) is a pair (U, φ) , where $U \in \mathcal{T}$ and φ is a homeomorphism such that $\varphi[U] \subset \mathbb{R}^n$ is open.

Definition 1.2 (Locally Euclidean). A topological space (X, \mathcal{T}) is said to be *locally Euclidean* if there exists some $n \in \mathbb{N}$ such that for all $x \in X$ there exists an n-dimensional chart (U_x, φ_x) with $x \in U$. The pair (U_x, φ_x) is called a *chart at* $x \in X$. If (U_1, φ_1) and (U_2, φ_2) are two n-dimensional charts on (X, \mathcal{T}) such that $U_1 \cap U_2 \neq \emptyset$, then

$$\varphi_1 \circ \varphi_2^{-1} : \varphi_2[U_1 \cap U_2] \longrightarrow \varphi_1[U_1 \cap U_2]$$
 and $\varphi_2 \circ \varphi_1^{-1} : \varphi_1[U_1 \cap U_2] \longrightarrow \varphi_2[U_1 \cap U_2]$

are homeomorphisms between open subsets of \mathbb{R}^n , called the *overlap functions*.

Definition 1.3 (Topological manifold). A topological space (X, \mathcal{T}) is a topological manifold if (X, \mathcal{T}) is Hausdorff, locally Euclidean and second countable.

Definition 1.4 (Atlas). Let (X, \mathcal{T}) be a topological manifold. An *n*-dimensional atlas on (X, \mathcal{T}) is a collection $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in I}$ of *n*-dimensional charts on (X, \mathcal{T}) , for some indexing set I, such that

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1} : \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \longrightarrow \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \quad \text{and} \quad \varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \longrightarrow \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$$

are diffeomorphisms for all $\alpha, \beta \in I$, and $\bigcup_{\alpha \in I} U_{\alpha} = X$. A chart (U, φ) on (X, \mathcal{T}) is said to be admissible to \mathcal{A} if

$$\varphi \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U \cap U_{\alpha}) \longrightarrow \varphi(U \cap U_{\alpha}) \text{ and } \varphi_{\alpha} \circ \varphi^{-1} : \varphi(U \cap U_{\alpha}) \longrightarrow \varphi_{\alpha}(U \cap U_{\alpha})$$

are diffeomorphisms for all $\alpha \in I$, and \mathcal{A} is said to be maximal if for every admissible chart (U, φ) there exists some $\alpha \in I$ such that $U = U_{\alpha}$ and $\varphi = \varphi_{\alpha}$. A maximal n-dimensional atlas $\mathcal{A}_{\max} = \{(V_{\alpha}, \psi_{\alpha})\}_{\alpha \in I}$ on (X, \mathcal{T}) is called a differentiable structure on (X, \mathcal{T})

Definition 1.5 (Differentiable manifold). A differentiable manifold is a triple $(X, \mathcal{T}, \mathcal{A})$, where (X, \mathcal{T}) is a topological manifold and \mathcal{A} is a differentiable structure on (X, \mathcal{T}) .

Definition 1.6 (Topological group). A group (G, \cdot) is a topological group if G is also a Hausdorff space and the maps

$$\mathcal{M}_G: G \times G \longrightarrow G$$

$$(g_1, g_2) \longmapsto g_1 \cdot g_2 \tag{1}$$

and

$$\operatorname{Inv}_G: G \longrightarrow G$$

$$g \longmapsto g^{-1} \tag{2}$$

are continuous.

Definition 1.7 (Lie group). A group (G, \cdot) is a *Lie group* if G is also a differentiable manifold and \mathcal{M}_G and Inv_G are smooth.

Definition 1.8 (Tangent space). Let (X, \mathcal{T}) be a differentiable manifold and $x \in X$. A tangent vector to X at x is a map $\mathbf{v} \in (C^{\infty}(X))^*$ for which the Leibniz Product Rule holds, i.e.

$$\mathbf{v}(fg) = f(p)\mathbf{v}(g) + \mathbf{v}(f)g(p) \tag{3}$$

for all $f, g \in C^{\infty}(X)$. The set $T_pX := \{ \mathbf{v} \in (C^{\infty}(X))^* : \mathbf{v} \text{ is a tangent vector to } X \text{ at } x \}$ is called the *tangent space to X at x*, and has a natural vector space structure where the operations are defined as

$$(\mathbf{v} + \mathbf{w})(f) = \mathbf{v}(f) + \mathbf{w}(g) \quad \text{and} \quad (a\mathbf{v})(f) = a\mathbf{v}(f) \tag{4}$$

for all $a \in \mathbb{R}$ and for all $f, g \in C^{\infty}(X)$.